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Abstract 

 

Although the adoption of modern varieties typically showed to have positive effect on crop productivity (Cassman, 

1999), it is also true that the progressive use of modern hybrid species can reduce the number of traditional varieties and 

lead to a dramatic decline of inter and intra crop genetic diversity (Tilman et al., 2002; Jarvis et al., 2011 ). This 

reduction has a negative impact on agriculture’s resilience to climatic shocks and there is a large evidence showing that 

agricultural biological diversity can significantly contribute to increase agriculture’s capacity to adapt to climate change 

and reduce farmers’ risk exposure (Di Falco and Chavas, 2009; Bellon, 2004; Jarvis et al., 2008. In addition, crop 

biodiversity is a key element for the functioning of ecological systems and generates benefits in terms of ecosystem 

services (Narloch et al., 2011). Thus, the question of whether we should foster the use of modern species or preserve the 

heterogeneity of crops arises. Answering such question is even more important for developing countries where 

agriculture represents a large part of their value added and a significant share of farmers still produce using traditional 

cultivation techniques preserving diversity. Previous research on economic modeling of climate change analyzing the 

impacts on agriculture did not explicitly consider the role of crop biodiversity as a potential adaptation factor that can 

mitigate the economic consequences of climate change impacts. 

The objective of this study is to fill this gap and provide a preliminary analysis for the Ethiopian economy on the links 

between crop diversity and climate change using a Computable General Equilibrium (CGE) methodology. The CGE 

model used is based on the Gtap 9 database (Aguiar et al. 2016) and employs a recursive dynamic version of the gtap-e 

model (Burniaux and Truong 2002, McDougall and Golub 2007).  The Gtap database and model have been modified to 

take into account the different characteristics of the given crop sector distinguishing between production with modern 

and traditional varieties. In this revised model, it is assumed that, for each crop, the modern and traditional industries 

produce the same commodity (i.e. there are two industries for one commodity such as maize) which is sold in the 



market at the same price.  This assumption is justified by the impossibility to distinguish the two products by 

consumers. 

The study will focus on maize and wheat crops that are relevant sectors of the Ethiopian agriculture in terms of crop 

diversity (i.e. the share of traditional industries is significant) and are affected by climate change through both direct 

and indirect pathways. The CGE analysis will be used also to explore the propagation of shocks in the system and the 

international spillovers of economic consequences, to emphasize sectoral specificities and highlight particular 

vulnerabilities. 

The CGE analysis is supported by an econometric analysis aiming to estimate the crop productivity differential between 

the traditional and the modern varieties. To this end, the study utilizes the Ethiopian LSMA-ISA 2013-2014 survey of 

the World-Bank.  The estimation approach is based on an endogenous switching regression model which allows 

obtaining differentiated parameters of the impact of socio-economic characteristics, national policies and agro-

geological factors on both the type of varieties. In particular, the analysis also evaluates the effect of climatic shocks on 

the productivity of both the categories of crops thereby highlighting, ceteris paribus, their respective resilience.  Such 

estimated impacts are used to calibrate the CGE model and simulate a climate change impact scenario on national 

agricultural production for Ethiopia.  
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1.	Introduction	
 
Since the 1970s agricultural economists developed several models to demonstrate the economic benefit of increasing 

crop productivity using modern varieties bred by professional plant breeders, that supported the green revolution and 

the intensification of production practices (Byerlee and Traxler, 1995; Morris and Lopez-Pereira, 1999; Alston et al. 

2000; Heisey et al. 2002, Everson and Gollin, 2003). Several studies underlines how the rationale for the use of 

traditional varieties on farmers’ fields goes beyond the conservation of crop genetic diversity. Numerous reasons exist 

for smallholder farm households to continue growing traditional crop varieties even in presence of widely available 

modern ones and agricultural development (Smale et al. 2001, Jarvis et al. 2011). Traditional crop varieties have a 

specific capacity to adapt to marginal or specific agricultural ecosystems (Barry et al, 2007), in particular where 

heterogeneous environments are present (Bisht et al, 2007) also because of their capacity to manage specific pest and 



disease, reducing the need for external inputs (Thurston et al., 1999; Zhu et al., 2000; Trutmann et al., 1996; Finckh et 

al. 2003; Jarvis et al., 2007a ). They can also adapt to rainfall variability and variable soil types (Bellon and Taylor, 

1993, Duc et al, 2010) acting as insurance against environmental risks (Sawadogo,2005 Bhandari, 2009), which is a 

particularly interesting feature in a context of climate change. Looking from a market perspective, traditional varieties 

resulted able to meet changing market demands (Smale, 2006; Vandermeer, 1995; Brush and Meng, 1998; Gauchan and 

Smale, 2007), social and economic characteristics of the household such as adult labor availability or distance to the 

market (Gauchan et al., 2005; Fu et al., 2006; Benin et al., 2006; Van Dusen, 2006; Bela et al., 2006) and cultural and 

religious needs (Rana et al., 2008; Nabban, 1989; Tuxill et al., 2009). Studies on dietary and nutritional values of 

traditional varieties are also emerging (Johns and Sthapit, 2004, Belanger et al. 2008) and are providing evidence of the 

role that agricultural biodiversity could have in future availability of nutritious and diverse food, particularly in areas 

with poor market linkages. Crop varietal diversity can also provide several ecosystem services (Hajjar et al. 2008) that 

in many cases are at the base of agro ecological systems and allow to reduce the use of fertilizers and pesticides (Di 

Falco and Perrings, 2007) and reduce the need to buy new seeds each year resulting in significant production cost 

reduction. Clearly all these rationale are not present in the same time and in all locations. Regmi et al. (2015) underline 

how the links between biodiversity, ecosystem services and food security vary across scales and are strongly influenced 

by socio-economic drivers of agricultural systems.  

At the same time, no economic models include crop diversity as an explicit component linking it to an economy-wide 

framework that take into account relationships between markets (e.g. general equilibrium structure).  The aim of this 

work is to include crop diversity in a CGE modeling framework using information on the diffusion of traditional and 

modern varieties in Ethiopia and to assess the economic impact of the use of traditional varieties on farmers’ fields.  

The research proceeds along the following steps: 

• Modify the theoretical structure of the standard Gtap CGE model to take into account crop diversity and tailor the 

data structure to an appropriate sectoral and regional detail differentiating between traditional and improved 

varieties. 

• Build reference social economic scenario “without climate change impacts” that will serve as counterfactual against 

which to assess the indirect economic impacts of climate change. 

• Perform the econometric analysis to estimate the climate change impacts on both traditional and improved wheat 

and maize yield. 

• Perform the climate change impact simulations and assess the related economic consequences.  

 



The paper is structured according to these three main lines: section 2 provides a review of the Ethiopian agricultural 

context; section 3 describes both the econometric and theoretical modelling framework; section 4 introduces the 

scenarios run with the model; section 5 discusses the results and section 6 briefly highlights the main findings. 

2.	The	context:	Agriculture	in	Ethiopia	
 
Ethiopia highland is the center of genetic diversity for a number of important crop species (Vavilov, 1951). Durum 

wheat is among the most diversified crop species in Ethiopia accounting for about 12% of the national genebanks 

holdings (Mengistu et al, 2016). Ethiopian highlands are, as other highlands locations, highly dissected terrain where 

humans dedicated to agriculture for very long period of time, allowing crop species to be subjected to varying 

microclimates and agricultural conditions. This process of crop cultivation over the millennia leads to an high crop 

species diversity (Egziabher 1991; Zimmer 1992). Ethiopia is often used as an example of the nexus between climate, 

agriculture and food shortage due to climate variability, particularly drought, land fragmentation and high population, 

especially in the highlands area where very long periods of agricultural occupation exists (Unruh, 2004).  

Even if the share of population living below poverty line in Ethiopia decreased from 45,5% in 1995/96 to 29,6% in 

2010/11 (CSA, 2011), food security remain a key challenge for Ethiopian Government as differences between rural and 

urban households have increased.  The vast majority of the population lives in rural areas (85%) and depends on 

agriculture for its livelihoods. The agricultural sector contributes in 2014 to 42% of a GDP with a growth rate of 89% 

between 2009 and 2015.  

Ethiopian farmers are mostly small scale producers, with lands between 5 and 2 hectares (WB, 2014) on which different 

types of agricultural activities (crop production, livestock etc.) are performed in a semi-subsistence agriculture where 

farmers relay on own factors to produce for own consumption, with a possibility of engaging in the product and factor 

markets outside the household (Aragie & McDonald, 2014). The CSA underline how over 95% of the annual gross total 

agricultural output is generated by this type of farms. Large and medium commercial famrs, more orietated to profit, 

represent the other 5%. The two subsectors, identified by the CSA, clarly differ in term of farm management practices 

and decision-making processes. However both farm types make a large use of traditional varieties.  

Teff, maize and wheat are the main crops of Ethiopian agriculture. Increasing yields of those crops is key to increase 

food security across households in Ethiopia (Benson et al. 2014) as productivity of cereals is low in both modern and 

traditional varieties, with an average of 2,21 t/ha between 2010 and 2014. This is due to several conditions such as land 

degradation, small farm size, recurrent drought and poor farm technology.  

Maize and Wheat are the two crops that have an higher contribution in term of calories uptake in the diet of Ethiopian 

households, with a contribution of 29% of calories intake from cereals coming from maize and 21% from wheat (FAO, 



2013, Berhane er al. 2011). Even if maize is the crop with higher share of area devoted to the cultivation of modern 

varieties (21%) traditional varieties are still dominating the seed system.  

Significant research efforts has gone into developing widely adapted hybrid varieties of maize and wheat for Ethiopia, 

starting from exogenous genetic material with the aim of improving yields and tolerate stress with narrow genetic bases 

(Jemanesh et al. 2013, Mengistu et al. 2016, Beyee et al. 2016). However, the limited adoption of modern farm varieties 

shows some limitation.  

 

 

 

3.	Modelling	Framework	
 
3.1 The Econometric framework  

3.1.1 The model 
 

The Endogenous switching regression (ESR) analyses the binary decision to adopt a modern crop variety (MV), and the 

implications it has on crop productivity in a two-stage framework. The use of the ESR to evaluate the technology 

adoption in agriculture is quite diffused (Alene and Manyong, 2007; Noltze et al., 2013; Abdulai and Huffman, 2014; 

Cavatassi et al., 2011; Coromaldi et al., 2015). In fact, the adoption decision, in a context of cross sectional analysis and 

without a randomized controlled experiment, might suffer of sample selection and endogeneity biases. Sample selection 

bias refers to the case where the decision to adopt is observed only by a restricted, non-random sample. The adoption 

status may be endogenous when the decision to adopt or not adopt is correlated with unobservable factors that affect the 

outcome variables, i.e. the maize and wheat production. The failure to control for this correlation yields an estimated 

downward biased adoption effect on outcomes. These factors are unknown to researchers, but accounted for in farmers’ 

expectations, affecting both the decision to adopt and the outcome variables. Moreover, since the outcome gap between 

adopters and non-adopters is assumed to be systematic, two different outcome equations are estimated in the ESR. The 

covariates are assumed to have different impacts on the two groups of farmers while a pooled sample would have 

considered the difference between groups as just intercept shifters. Therefore, with an ESR model, endogeneity and 

sample-selection (Hausman, 1978; Heckman, 1979) are both taken into account.  

The econometric specification is as follows: 

(1) 𝛿∗ = 𝛼′&𝑦𝑀𝑉 − 𝑦𝐿𝐿, + 𝑧′𝛾 + 𝜀 



(2) 1				𝛿 = 0	𝑖𝑓			𝛿∗ ≤ 0				
𝛿 = 1	𝑖𝑓		𝛿∗ > 0  

Equations (1) and (2) are the specification of a probit model for the dichotomous adoption decision (criterion function) 

in the first stage (Maddala, 1983). 𝛿∗ is the latent variable that determines if a farmer is a MV adopter or not, and is 

based on the farmers’ expectations regarding the relative performance of the new technology in respect to the Local 

landraces (LL), expressed in terms of an outcome variable y; 𝛿∗ is not observable but we observe	𝛿, which is the MV 

adoption dummy; 𝑧9 is a vector of covariates that are relevant for the adoption decisions; 𝛼 and 𝛾 are unknown 

parameters vectors to be estimated and 𝜀 is a random disturbance term with zero mean and 𝜎; variance.  

Equation 3 and 4 represent the regime equations, in the second stage, that we observe conditional to adoption decisions 

made at the first stage: 

(3) 𝑦<< = 𝜑9𝛽<< + 𝜂	𝑖𝑓 𝛿 = 0 

(4) 	𝑦@A = 𝜑9𝛽@A + 𝜖	𝑖𝑓 𝛿 = 1, 

where 𝜑′ is a vector of covariates that affects y and may overlap with 𝑧′, but with the caution, for the model 

identification purpose, to have at least one instrument in the criterion equation that is not in the regime equations; 𝛽@A	 

and 𝛽<< are vectors of parameters to be estimated, 𝜖 and 𝜂 are random disturbances terms with zero mean and 𝜎C; and 𝜎D; 

variance. The covariance matrix is: 

(5) ∑(ε, ϵ, η) = L
σN; σOP σNP
σOP σO; σOP
σNP σOP σP;

L, 

where 𝜎Q equals 1 since 𝛼 and 𝛾 are estimable only up to a scale factor (Greene, 2008). Moreover, 𝜎DQ = 0 because it is 

not possible to observe adoption and non-adoption outcomes contemporary (Maddala and Nelson, 1975). Estimation of 

the covariance terms can provide a test for the endogeneity through the significance of the following correlation 

coefficients: 

(6) 𝜌CQ=𝜎CQ/𝜎C𝜎Q, 𝜌DQ = 𝜎DQ/𝜎D𝜎Q 

These correlations have also an economic interpretation that will be explained in the description of results. The 

expected values of the truncated errors are equal to: 

(7) 𝐸(𝜂|𝛿 = 0) = −𝜎DQ𝜆D = −𝜎DQ
WX YZ[

\

]^_X YZ[
\
 

(8) 	𝐸(𝜖|𝛿 = 1) = 𝜎CQ𝜆C = 𝜎CQ
WX YZ[

\

_X YZ[
\
 

where 𝜆C and 𝜆D are the Inverse Mill Ratios estimated at 𝜉 = 𝛼′(𝑦@A − 𝑦<<) + 𝑧′𝛾 and 𝑓 and 𝐹 are, respectively, the 

density and the cumulative distribution function. 



As explained in Lokshin and Sajaia (2004), the ESR can efficiently be estimated with the full information maximum 

likelihood (FIML) approach, ensuring the simultaneous estimation of the probit model and regime equations with 

consistent standard error.  

3.1.1.2 Treatment effect 
The conditional expectations from the ESR can be used to estimate the average treatment effects (ATE) of the 

counterfactual scenario for both the groups. Expectations conditional to adoption decision are estimated as follows (Di 

Falco et al., 2011): 

(9) 𝐸(𝑦@A|𝛿 = 1) = 𝜑9𝛽@A + 𝜎CQ𝜆C 

(10) 𝐸(𝑦<<|𝛿 = 1) = 𝜑9𝛽<< + 𝜎DQ𝜆C  

(11) 𝐸(𝑦@A|𝛿 = 0) = 𝜑9𝛽@A + 𝜎CQ𝜆D 

(12) 𝐸(𝑦<<|𝛿 = 0) = 𝜑9𝛽<< + 𝜎DQ𝜆D. 

Equations (9) and (12) are the actual outcome expectations conditional to the adoption status chosen by farmers. These 

represent the expected outcome of MVs adopters when they adopt and the non-adopters outcome when they do not 

adopt. Equations (10) and (11) evaluate the outcomes in the counterfactual case that adopters did not adopt and that 

non-adopters adopted thereby providing a measure of the relative performance of the status for which the farmer has 

opted. Thus, the ATE of adoption on adopters (TT) and the ATE of adoption on non-adopters (TU) are equal to: 

(13) 	𝑇𝑇 = 𝐸(𝑦@A|𝛿 = 1) − 	𝐸(𝑦<<|𝛿 = 1) = 𝜑9(𝛽@A − 𝛽<<) + (𝜎CQ^𝜎DQ)𝜆C, 

(14) 𝑇𝑈 = 𝐸(𝑦@A|𝛿 = 0) − 	𝐸(𝑦<<|𝛿 = 0) = 𝜑9(𝛽@A − 𝛽<<) + (𝜎CQ^𝜎DQ)𝜆C. 

3.1.1.3. Data description 
We use data from 2013 LSMS-ISA nationally representative survey in Ethiopia, gathered by the World Bank. 

Information on rural household and plot cultivation characteristics, inputs use, availability of extension services and 

agro-climatic characteristics were collected over the planting and harvesting seasons. The survey also recorded geo-

referenced enumeration area level data that allows to merge plot level data with monthly local rainfall and temperature 

from the NOAA and the European center for medium range weather forecast. 

Considering data limitation for some of the covariates utilized, the final sample consists of 2617 plots that cultivate 

maize and 1230 that cultivate wheat.  

Descriptive data with statistical significance test on equality of means between modern varieties adopters and non-

adopters are reported in Table 1. The percentage of modern varieties adopters for maize is equal to the 23.79%, while in 

the case of wheat it equals the 11.62%.  

The outcome variable is the yield expressed in kilograms per hectare. We can see that for both the crops, the modern 

varieties outperform the traditional ones on average. In particular, the mean maize yield of non-adopters is equal to 



1930 kilograms per hectare, while for adopters is equal to around 2450 kg/ha. The differential is larger for wheat where 

we observe a yield of 1500 and 2500 kg/ha for the non-adopters and adopters, respectively. 

A set of covariates including socio-economic characteristics, geographic and climatic elements, soil and agro-stresses, 

agricultural inputs use and an instrumental variable of advice on seed use are considered according to literature (Di 

Falco et al, 2011; Bryan er al, 2013; Teklewold et al., 2013; Noltze et al., 2013; Shiferaw et al., 2014; Coromaldi et al., 

2015).  



Table 1 
  MAIZE  WHEAT 
 Description Non-adopters 

(76.21%) 
 Adopters 

(23.79%) 
 Non-adopters 

(88.38%) 
Adopters 
(11.62%) 

  Mean 
(SD) 

 Mean 
(SD) 

 Mean 
(SD) 

Mean 
(SD) 

        
yield Yield, kg per ha 1960.534***  2447.107***  1527.137*** 2489.327*** 
  (2485.098)  (2275.476)  (1641.606) (2775.496) 
sex_head sex_head (1=female) 0.205*  0.172*  0.180* 0.245* 
 

 
(0.404)  (0.377)  (0.384) (0.431) 

edu_15_60 Education level of member between 15 and 60 years 0.799***  0.946***  1.028*** 1.360*** 
 

 
(1.147)  (1.239)  (1.228) (1.638) 

hh_size Household size 6.004**  6.239**  6.174 6.343 
 

 
(2.354)  (2.314)  (2.237) (2.338) 

Temperature Annual Mean Temperature (°C) 19.962***  18.338***  16.266*** 17.065*** 
 

 
(2.738)  (1.993)  (2.293) (1.597) 

Rainfall Annual Precipitation (mm) 1099.979***  1335.909***  1128.448*** 1027.007*** 
 

 
(381.727)  (314.684)  (323.516) (433.095) 

dist_market HH Distance in (KMs) to Nearest Market 69.047***  50.901***  68.316*** 48.220*** 
 

 
(55.238)  (40.411)  (45.509) (40.998) 

Drought Drought experience 0.074***  0.027***  0.089*** 0.259*** 
 

 
(0.262)  (0.163)  (0.285) (0.439) 

S Shannon index 2.365  2.298  2.151 2.042 
 

 
(1.412)  (1.545)  (1.438) (1.313) 

aez2 ssa_aez09==Tropic-warm/subhumid 0.044***  0.003***  0.537*** 0.392*** 
 

 
(0.204)  (0.057)  (0.499) (0.49) 

aez3 ssa_aez09==Tropic-cool/semiarid 0.365***  0.085***  0.177 0.126 
 

 
(0.481)  (0.279)  (0.382) (0.333) 

aez4 ssa_aez09==Tropic-cool/subhumid 0.398***  0.734***    
 

 
(0.49)  (0.442)    

aez5 ssa_aez09==Tropic-cool/humid 0.140*  0.169*    
 

 
(0.347)  (0.375)    

fert_ha Kilograms of fert per ha 80.364***  319.339***  133.461*** 205.220*** 
 

 
(315.462)  (618.056)  (214.492) (235.042) 

labour1_ha Men days of labour1 per ha 603.296  517.699  297.142 336.663 
 

 
(1537.8)  (1034.51)  (685.195) (708.043) 

agri_land Percent agriculture within approx 1 km buffer 29.839***  33.326***  31.039* 34.119* 
 

 
(19.384)  (15.34)  (19.757) (21.636) 

Income_class_2 Consumption quintile==    2 0.2  0.201  0.186 0.147 
 

 
(0.4)  (0.401)  (0.389) (0.355) 

Income_class_3 Consumption quintile ==    3 0.185  0.185  0.204 0.231 
 

 
(0.388)  (0.388)  (0.403) (0.423) 

Income_class_4 Consumption quintile ==    4 0.199  0.215  0.211 0.245 
 

 
(0.399)  (0.411)  (0.408) (0.431) 

Income_class_5 Consumption quintile ==    5 0.185  0.189  0.214 0.238 
 

 
(0.388)  (0.392)  (0.41) (0.427) 

slope_parcel weighted mean slope of plot 11.867***  8.881***  14.429*** 10.614*** 
 

 
(10.38)  (9.45)  (12.447) (9.642) 

anti_erosion Anti erosion measures 0.645  0.64  0.79 0.783 
 

 
(0.479)  (0.48)  (0.407) (0.414) 

land_fair land==    fair 0.347*  0.308*  0.34 0.287 
 

 
(0.476)  (0.462)  (0.474) (0.454) 

land_poor land==    poor 0.272***  0.551***  0.336 0.343 
 

 
(0.445)  (0.498)  (0.473) (0.476) 

MV_advice Received advice on seeds  0.056***  0.803***  0.046*** 0.825*** 
 

 
(0.229)  (0.398)  (0.209) (0.381) 

 Standard deviations in parentheses    
 * significant at 10%; ** significant at 5%; *** significant at 1%    



3.1.2 Results 
Table 2 illustrates the results of the ESR model, which is estimated at plot level using the FIML approach with a log-log 

functional form. Estimation of the criterion equation are shown in columns (1) and (4) for the maize and wheat, 

respectively. In columns (2) and (3) we report the maize yield function of non-adopters and adopters of modern 

varieties. The same are reported in column (5) and (6) for the wheat.  

Overall, from the criterion equations we see that the instrument we utilized for identifying our model, the fact that 

farmers received advice on the type of seed to utilize, is highly significant in explaining the adoption decision on their 

plots by farmers. Also it is interesting to note that, with the exception of the distance from the agricultural market that 

has a negative impact on the probability of adopting a modern variety, the other socio-economic variables are not 

significant drivers of such decision. Nevertheless, being in top quintile of income is a characteristic that enhances the 

chance to adopt.  

We are here interested in the climatic variables and how they impact on the yield. Our results highlights the following 

findings: an increase in temperature has a significant negative impact on the maize yield of non-adopters thereby 

determining a reduction in productivity of the 6% for a 1% of the increase in temperature. The temperature, instead, has 

not significant impact on the adopters yield.  

On the contrary, we see that the yield of wheat benefits of higher temperature and this is true for both the adopters and 

the non-adopters, but the marginal effect is significantly higher for the adopters. In fact, an increase of 1% of 

temperature produce 1.3% increase of wheat yield of non-adopters against a 12% increase of adopters. 

Lastly, also should be underlined the effect of the crop diversification on yield. The Shannon index shows an opposite 

impact on the non-adopters and adopters. While it sustain the productivity of non-adopters in both the case of maize and 

wheat, it reduces the yield of adopters (just for maize) confirming as the diversification can be a risk minimization 

strategy for marginalized farmers that heavily rely on traditional agriculture, while the adoption of modern varieties to 

let the productivity at plot level highly responsive require a strategy of intensification and monocropping. 

 
   



 

 

  

Table 2: Endogenous Switching regression on Maize and Wheat Cultivation 
 Maize  Wheat 

 (1) (2) (3)  (4) (5) (6) 
 Regime Non-adopters Adopters  Regime Non-adopters Adopters 
1) Socio-economic        
sex_head -0.261* -0.087 -0.159  -0.026 0.006 0.547 
 (0.117) (0.108) (0.088)  (0.195) (0.085) (0.292) 
edu_15_60 0.081 0.069 0.040**  0.062 -0.065 -0.081 
 (0.088) (0.086) (0.023)  (0.146) (0.061) (0.185) 
hh_size -0.017 -0.134 0.082  0.033 0.024 -0.009 
 (0.113) (0.099) (0.085)  (0.035) (0.015) (0.049) 
dist_market -0.095* -0.0829 -0.0672  -0.076*** -0.014 -0.022 
 (0.057) (0.0556) (0.0449)  (0.011) (0.045) (0.153) 
Income_class_2 0.110 0.155 0.112  0.005 0.160 -0.274 
 (0.140) (0.129) (0.102)  (0.274) (0.104) (0.380) 
Income_class_3 0.195 -0.030 0.212*  -0.066 0.327** 0.451 
 (0.143) (0.134) (0.106)  (0.257) (0.103) (0.349) 
Income_class_4 0.226* 0.107 0.253*  0.035 0.411*** 0.116 
 (0.141) (0.133) (0.106)  (0.266) (0.103) (0.361) 
Income_class_5 0.379*** 0.245 0.215*  0.357** 0.300** 0.194 
 (0.146) (0.140) (0.108)  (0.172) (0.105) (0.368) 
2) Agricultural inputs        
fert_ha 0.271*** 0.039 0.085***  0.176*** 0.069*** 0.012 
 (0.017) (0.022) (0.020)  (0.043) (0.013) (0.078) 
labour1_ha 0.0615 0.178*** 0.139***  0.016 0.107*** 0.319*** 
 (0.038) (0.034) (0.028)  (0.067) (0.028) (0.081) 
agri_land 0.037 0.071 0.053  0.116 0.028 -0.096 
 (0.051) (0.039) (0.052)  (0.078) (0.029) (0.099) 
Shannon -0.007 0.0527* -0.0643**  0.103 0.036* -0.018 
 (0.031) (0.0316) (0.0228)  (0.055) (0.022) (0.084) 
3) Agro-ecological        
slope_parcel 0.027 -0.115* -0.098*  -0.080 -0.006 -0.125 
 (0.060) (0.053) (0.045)  (0.087) (0.037) (0.127) 
Land_fair 0.338** 0.091 -0.233*  -0.076 0.168* 0.246 
 (0.126) (0.104) (0.108)  (0.195) (0.081) (0.248) 
Land_poor 0.794*** -0.030 -0.386***  0.249 -0.411*** 0.010 
 (0.133) (0.125) (0.110)  (0.219) (0.093) (0.284) 
slope_parcel 0.027 -0.115* -0.098*  -0.080 -0.006 -0.125 
 (0.060) (0.053) (0.045)  (0.087) (0.037) (0.127) 
Drought 0.086 -0.276 -0.099  0.427 -0.078 0.259 
 (0.202) (0.163) (0.210)  (0.219) (0.115) (0.269) 
aez2 -0.145 0.903** 1.721*  -0.819** 0.323** 1.568*** 
 (0.498) (0.302) (0.766)  (0.297) (0.114) (0.459) 
aez3 0.240 1.607*** 0.473  -0.649 0.0216 1.443* 
 (0.442) (0.275) (0.556)  (0.370) (0.143) (0.601) 
aez4 0.996** 1.609*** 0.757     
 (0.468) (0.291) (0.558)     
aez5 0.972** 1.814*** 0.775     
 (0.497) (0.333) (0.602)     
4) Climatic        
Temperature -6.281*** -6.183*** -1.122  7.356* 1.345** 12.201* 
 (1.679) (0.143) (1.588)  (3.523) (0.653) (5.375) 
Temperature_sq 1.041*** 1.068*** 2.100  -1.278* -0.232** -2.151* 
 (0.283) (0.240) (2.692)  (0.618) (0.114) (0.943) 
Rainfall -0.042 2.337 3.076  -1.845*** 4.271 0.362 
 (3.136) (2.949) (2.852)  (0.882) (4.356) (1.296) 
Rainfall_sq 0.010 -0.123 -0.246  1.367* -0.344 -0.156 
 (0.227) (0.216) (0.204)  (0.634) (0.311) (0.928) 
5) Instrument        
Seeds_Advice 1.996***    2.534***   
 (0.091)    (0.161)   
        
cons 90.86*** 83.45*** 11.45  -46.33 -26.52 -163.2 
 (23.85) (21.94) (21.34)  (61.70) (18.04) (91.47) 
sigma  0.602*** -0.260***   0.021 0.083 
  (0.016) (0.028)   (0.021) (0.059) 
rho  -0.216* 0.085   -0.132 -0.089 
  (0.089) (0.081)   (0.103) (0.187) 
N 2617    1230   
chi2_c 4.855    1.640   
Standard errors in parentheses:* p < 0.05, ** p < 0.01, *** p < 0.001 



3.2 CGE Model description 

3.2.1 General Overview 
Since the end of the ‘90s CGE models have been increasingly used to study the economic implication of climate change 

impacts and mitigation (see e.g.: Deke et al., 2001; Darwin and Tol, 2001; Bosello et al., 2006, 2007; Bohringer et al., 

2009; Aaheim et al., 2010; Eboli et al., 2010; Roson and Van der Mensbruegghe, 2010; Ciscar et al., 2011, 2013; 

Orecchia et al., 2013; Dellink et al., 2014).  They are multi-country multi sector model whose main strength is the 

ability to capture endogenous demand and supply reactions to climate shocks transmitted through changes in relative 

prices.  

For the purpose of this exercise, we use a modified version of the GTAP-E model (McDougall and Golub 2009) with 

endogenous dynamics for capital accumulation. The calibration year is 2011, data come from the GTAP9 database 

(Narayanan et al. 2015) and the simulation time is 2012-2050. 

As standard in CGE models, this modified version of the GTAP-E model makes use of the Walrasian perfect 

competition paradigm to simulate market adjustment processes. A representative consumer in each region receives 

income, defined as the service value of national primary factors (natural resources, land, labor, and capital). Capital and 

labor are perfectly mobile domestically, but immobile internationally. The income is used to finance three classes of 

expenditure: aggregate household consumption, public consumption, and savings (Figure 1). The expenditure shares are 

generally fixed, as the top-level utility function has a Cobb-Douglas specification. 

 



 

Figure 1 – Demand structure 

 

Public consumption is split in a series of alternative consumption items, also according to a Cobb-Douglas 

specification. However, almost all expenditure is actually concentrated in one specific industry: public services. In a 

lower nest public consumption is split in a series of alternative composite Armington aggregates. These postulate the 

imperfect substitutability across domestic and imported commodities. Private consumption is analogously split in a 

series of alternative consumption items. However, the functional specification used at this level is the Constant 

Difference in Elasticities form: a non-homothetic function, which is used to account for possible differences in income 

elasticities for the various consumption goods. 

Industries are modeled through representative firms, minimizing production costs while taking prices as given. In turn, 

output prices are given by average production costs. Production functions are specified via a series of nested constant 

elasticity of substitution (CES) functions. Domestic and foreign inputs are imperfect substitutes, according to the 

“Armington” assumption.  

All sectors use primary factors such as labour and capital-energy, and intermediate inputs. In some sectors (fossil fuel 

extraction industries and fishery), primary factors include natural resources (e.g., fossil fuels or fish) and land. The 

nested production structure depicted in Figure 2 is the same across all sectors, and diversity in production processes as 

well as technologies is captured through sector-specific productivity and substitution elasticity parameters.  

 



 

Figure 2 – Supply structure 

 

The dynamics of the model rely on the idea of “recursiveness” where a sequence of static equilibria are connected by 

the process of capital accumulation. Capital growth is standard along exogenous growth theory models and follows: 

𝐾𝑒g 	= 	 𝐼g 	+	(1 − 𝛿)	𝐾𝑏g (1) 

where Kel is the “end of period” capital stock, Kbl is the “beginning of period” capital stock, δ is capital depreciation 

and 𝐼g is endogenous investment.  

Sources of world investments are savings from households. Allocation of investments across regions follows  Pant 

(2007) and is given by 

𝐼g = 𝜑g𝑅𝐺𝐷𝑃g	𝑒[(st&ut
v^uw,] (2) 

where RGDP is real GDP, 𝜌g and 𝜑g  are given parameters, 𝑅gy and 𝑅z are the expected rate of return to capital in 

region r and the world rate of return to capital respectively.  

Investment is internationally mobile: savings from all regions are pooled and then investment is allocated so as to 

achieve equality of expected rates of return to capital. As a result, savings and investments are equalized at the world, 



but not at the regional, level. Because of accounting identities, any financial imbalance mirrors a trade deficit or surplus 

in each region.  

Technological progress, governing both productivity of factors and their substitutability is exogenous. Energy efficiency 

is represented by a Hicks-neutral autonomous and exogenous energy-efficiency improvement function.  

 

3.2.2 Crop diversity  
The original Gtap-E model is significantly modified to introduce crop industries by different level of crop diversity (and 

differentiate between traditional and improved varieties). First we used the SplitCom (Horridge, 2005) software to 

single out the maize sector from the original Gtap sector GRO “Cereal grains nec”. To perform this split we used the 

share of maize in original Gtap gro sector in total production (around 36%). At this step we maintain for both sectors( 

the new maize sector and the gro sector without maize named “Other cereals”) the same cost-structure of the original 

sector. Then we sequentially split each crop industry to obtain two distinct industries of traditional and improved 

production. Here we  characterize the production structure of the new sectors using  information on the shares of 

traditional and improved industries in the sales, costs, and trade items of each crop industry. Table 2 presents the split of 

the database according to the information obtained from the Ethiopian LSMA-ISA 2013-2014 survey of the World-

Bank.  

Table 2 - Agricultural area allocation (%), production (%) and input share (%), by crop species and variety 

Crop  
Production  
(% of total 
production) 

Area  
(% of total land) 

Labour 
(% of crop labour) 

Chemical fertilizers 
(% of crop 
fertilizers) 

 Trad Imp Trad Imp Trad Imp Trad Imp 
Maize* 0.605 0.395 0.750 0.251 0.662 0.338 0.234 0.767 
Rice 0.938 0.063 0.824 0.177 0.928 0.072 0.541 0.459 
Wheat 0.909 0.091 0.910 0.090 0.883 0.117 0.873 0.127 
Other cereals 0.981 0.020 0.973 0.027 0.980 0.020 0.970 0.030 
Vegetables 
and fruits 0.981 0.020 0.992 0.009 0.992 0.008 0.989 0.011 

Oil seeds 0.992 0.009 0.995 0.006 0.993 0.007 0.969 0.031 
Sugar cane, 
sugar beet 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 

Plant-based 
fibers 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 

Other crops 0.994 0.006 0.993 0.008 0.983 0.017 0.921 0.079 
*share of maize in original Gtap gro sector: Area=0.274,  Production=0.358 

 



The procedure followed to split the database is based on some assumptions.  First we assumed that the traditional and 

modern products are homogeneous. Homogeneity implies that there are two industries that produce the same crop 

commodity. Using the example of maize, this means that the price of traditional and modern maize are the same. The 

second assumption regards the price of inputs which we assume to be the same for the two new sectors. This implies 

that the price of the seeds is the same for Modern and Traditional industries. Finally, we modified the input-output ratio 

for Traditional and Modern production according to the Ethiopian LSMA-ISA 2013-2014 survey of the World-Bank. 

All these assumptions imply that the cost shares for each input used are different  in the two industries. For example, the 

cost share of land in the traditional wheat industry is different from the cost share of land in the modern wheat industry. 

Crop genetic diversity is an implicit input embodied in the traditional land. Higher revenues due to crop diversity will 

be reflected in the land rent.  

To allow the production of a single homogeneous commodity by two different industries we followed the modelling  

approach used by Taheripour et al. (2013)  and we introduced the following equations:  

 

𝑝𝑖|g}~�|���}�� = 𝑝𝑖���g���~� = 𝑝𝑠�, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗	 ∈ 𝑠𝑒𝑡	𝑜𝑓	𝑐𝑟𝑜𝑝	𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠 (1) 

𝑝𝑖� = 	 � 𝑆��		𝑝𝑓��	
�

�	∈|��_����

𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗	 ∈ 𝑠𝑒𝑡	𝑜𝑓	𝑐𝑟𝑜𝑝	𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠 
(2) 

𝑞𝑓�� = 	𝑞𝑖� − 	𝜖&𝑝𝑓�� −	𝑝𝑖�,	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘	 ∈ 𝑡𝑜𝑝����𝑎𝑛𝑑	𝑎𝑙𝑙	𝑗	 ∈ 𝑠𝑒𝑡	𝑜𝑓	𝑐𝑟𝑜𝑝	𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠 (3) 

𝑞𝑜� = 	 � 𝑆ℎ𝑟�z	𝑞𝑖�z	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑐	 ∈ 𝑠𝑒𝑡	𝑜𝑓	𝑐𝑟𝑜𝑝	𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠	
z	∈	|g}~�|���}�,���g���~

 (4) 

 

 

Where pi and qi represent percent changes in the price and quantity of j at the industry level and ps and qo represent 

their corresponding percentage changes at the commodity market level (where there is no distinction about the method 

of production). The variables qf and pf stand for percentage changes in price and quantities of inputs used for crop 

production at the industry level. Finally, 𝑆��  represents the cost share of input k in industry j, ε is the elasticity of 

substitution among intermediate inputs and 𝑆ℎ𝑟�z is the share of crop c supply by diversification type w. 

Equation 1 ensures that traditional and improved industries which produce the same crop (e.g., wheat) will receive the 

same price and that the prices at the industry and commodity levels are the same. Equation 2 is the zero profit condition 

for each crop industry. Equation 3 represents the demand for intermediate input k in crop industry j, and finally, 

Equation 4 ensures market clearing condition for each crop. 



We also adjust the land supply structure to allow for competition among the different agricultural sectors and among 

traditional and modern agriculture in particular. The land supply tree is presented in Figure 3. As shown in this figure 

the top level allocates land among forest and agriculture. The second level of the new structure allocates agriculture 

between grazing and cropland categories. The third level allocates land between traditional and modern cropping 

activities. Finally, the lower level of the new tree governs the supplies of traditional and modern areas among the 

traditional and modern cropping activities. Elasticity of substitution between Traditional and Improved varieties has 

been estimated and is equal to 1.98. To our knowledge, this is the first attempt to provide an estimate of this elasticity 

and no other study exists to compare this result. 

 

 

Figure 3 – Land supply 

 

 

4.	The	scenarios	
The simulation scenario matrix is summarized by Table 3.  We run a no climate change scenario and then we add the 

climate shocks for Wheat and Maize differentiated between Traditional and Improved varieties. In this scenario only the 

Ethiopian economic system is hit by (positive or negative) climate change shocks. The simulations make use of the 

estimates obtained from the endogenous switching regression model presented in the previous section. 

 



Table 3 – Scenario Matrix  

1 -  Baseline SSP2 – standard market driven adaptation 2 - Wheat and Maize crops impact scenario RCP 
4.5 – standard market driven adaptation 

 

4.1 The benchmark construction process  
 

Table 4 presents the regional and sectoral detail used in the simulation. Given the focus of our study, the emphasis is put 

on the primary sector with nine agricultural products. Similarly, country aggregation has been decided in order to single 

out the most important trading partners of Ethiopia. 

 

Table 4 - Sectoral and regional detail of the model 

Regions Commodities Industries 

    
Ethiopia Rice Rice Traditional 
SSA 
(Sub-saharan Africa) Wheat Rice Improved 
Oceania  
(Australia, New Zealand)  Wheat Traditional 
China Maize Wheat Improved 
Asia  Maize Traditional 
SEAsia Cereal grains nec Maize Improved 
SouthAsia Vegetables, fruits, nuts Other Cereals Traditional 
USA Oil Seeds Other Cereals Improved 
Rest of North America Sugar cane, sugar beet Vegetables and fruits Traditional 
Latin America Plant-based fibers Vegetables and fruits Improved 

 Crops nec Oil Seeds Traditional 
European Union 28 Timber Oil Seeds Improved 
Russia Livestock and Meat Products Sugar cane & sugar beet Traditional 
Middle East and North Africa Coal Sugar cane & sugar beet Improved 
Rest of the World Oil Plant-based fibers Traditional 
Rest of the World Gas Plant-based fibers Improved 

 Petroleum Products Other crops Traditional 

 Electricity Other crops Improved 

 Processed Food Timber 

 Textiles and Clothing Livestock and Meat Products 

 Chemicals Coal 

 Light Manufacturing Oil 

 Heavy Manufacturing Gas 

 Transport and Communication Petroleum Products 

 Other Services Electricity 

  Processed Food 

  Textiles and Clothing 

  Chemicals 



  Light Manufacturing 

  Heavy Manufacturing 

  Transport and Communication 
    Other Services 

 

Data are from the GTAP 9 database whose base year is 2011. For the 2013-2050 period, the simulation horizon, we 

calibrate the model using information from the SSP2 scenario (O’Neil et al 2012)1.   

Figure 4 reports the % macro-sectoral composition of Ethiopia value added as reported by the World bank (WDI, 

2016)2 in 2013 and what calibrated with the model. The matching between the two is almost perfect, featuring the 

agricultural, industrial and services macro-sectors contributing the 44.9%, 11.9% and 43.2% to total value added 

respectively. 

 

 

Figure 4 - (%) shares of sectoral Value Added in Ethiopia 

 

Figure 9 reports the share of exports and imports of Ethiopia per trading partner in 2013. Differently from the sectoral 

composition of value added, these have not been calibrated, as international trade flows in a CGE model are very 

difficult to control. Furthermore, in CGE models with global coverage, and GTAP 9 database makes no exception, 

bilateral import-export flows tend to diverge sometimes non marginally from national statistics. This is due to the 
                                                        
1 The Shared Socioeconomic Pathways (SSPs) are part of a new framework that the climate change research community 
has adopted to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. 
They are built around a matrix that combines climate forcing on one axis (as represented by the Representative Forcing 
Pathways) and socio-economic conditions on the other. Together, these two axes describe situations in which 
mitigation, adaptation and residual climate damage can be evaluated (for more information visit: 
https://secure.iiasa.ac.at/web-apps/ene/SspDb/static/download/ssp_suplementary%20text.pdf. SSP2 represent the 
“Middle of the Road” scenario. It is a world where trends typical of recent decades continue, with some progress 
towards achieving development goals, reductions in resource and energy intensity at historic rates, and slowly 
decreasing fossil fuel dependency. Development of low-income countries proceeds unevenly, with some countries 
making relatively good progress while others are left behind. SSP2 is conceived as a scenario posing intermediate 
challenges to both mitigation and adaptation. 
2 Last Update 21-Dec-2016. 



difficulty to match bilateral multi-national data that are often incomplete or based upon quite different 

accounting/statistical criteria. What reported in  Figure 9  are thus endogenous outputs of the model. 

Anyway they replicate reasonably well the patterns of Ethiopian international trade, featuring Europe, South Asia, the 

Rest of Sub Saharan Africa aggregate as the major destination markets. Imports are sourced primarily from USA and 

Russia. 

 

 

Figure 5 - (%) Maize and Wheat shares of export and import by trading partner  in 2013 

 

It is worth noticing that wheat represents almost 80% of all cereal imports while its share of exports is very small.  

Ethiopian GDP and population growth rates in SSP2 coinciding with those featured by the model are reported in Figure 

6. 

 

Figure 6 - Ethiopia GDP (left) and population (right) % growth rates 2014-2050 

Both GDP and population are projected to increase significantly in SSP2 scenario highlighting for Ethiopia a GDP 

increase of nearly 900% in 2050 wrt the 2013 levels. Population as well, is projected to increase around 90% between 

2014 and 2050 in SSP2. 

Going back to Figure 4, it can be noticed that the composition of macro sectoral value added (that in the SSPs 

projections is left free to vary endogenously) remains quite stable until mid-century, with a slight increase of the weight 

of the industrial and services sector.  



By 2050 international trade depicts a tendency to reallocate import export flows toward the fast growing developing 

countries. In particular Ethiopia is expected to increase its imports share from Russia and that of exports towards South 

Asia.  

 

 

Figure 7 - (%) Maize and Wheat shares of export and import by trading partner  in 2050 

 

Agricultural production is expected to significantly increase along the period considered. In particular, wheat 

production is expected to increase by 800% while maize to reach a 6-fold increase with respect to 2013 (Figure 8). 

 

Figure 8 – Change in Output wrt 2013 in agricultural sectors in 2050 

 

In terms of land allocation, the evolution for the two crops is similar between 2013 and 2050 with improved land 

increasing their share on total land (Figure 9). 



 

Figure 9 – Share of Traditional and Improved varieties in total land demand in 2013 and 2050 

5.	Results	
 
5.1 Climate change impacts scenario 
 

The secondo scenario will compare the performance of traditional and modern varieties in a context of climate change 

in Ethiopia. 

Having defined the social economic reference, it is necessary to define the climate change scenarios producing the 

impacts to be analyzed. According to Riahi et al. (2016) up to 2050, SSP2 scenario is consistent with both high and low 

representative concentration pathways (RCP 4.5 and RCP6.0) and the associate temperature increases are rather similar 

(Figure 10). Thus, one temperature increase of +1 °C wrt 2010-13 period is considered. 

 

 

Source: KNI Climate explorer http://climexp.knmi.nl 

Figure 10 – Temperature projections for Ethiopia in RCP4.5 and 6.0 

 



According to the econometric model presented in the paragraph 3.1, for maize traditional an increase in temperature of 

1% determines a reduction in productivity of the 6%. The temperature, instead, has not significant impact on maize 

improved yield.  On the contrary, we see that the yield of wheat benefits of higher temperature and this is true for both 

the adopters and the non-adopters, but the marginal effect is significantly higher for the adopters. In fact, an increase of 

1% of temperature produce 1.3% increase of wheat yield of traditional land against a 12% increase of improved land.  

According to RCP 4.5 and 6.0, Ethiopia will experience a 5.8% increase in average temperature going from 22.6 °C to 

23.9 C°. This implies a reduction of land yield for maize traditional of 40.3% and an increase of 7.0% and 71.4% for 

wheat traditional and wheat improved varieties respectively. These shocks have been linearized along the 2013-2050 

horizon and introduced into the model as productivity percentage shifts for the “Wheat and Maize crops impact 

scenario”. They are added to the reference scenario where agricultural productivity increases in each period based on 

average performances of the agricultural sector between 2001-2013. This latter information is based on the WDI 2016.  

Results show that compared to the baseline, wheat output is increased by 10.6% while that of maize is decreased by 

1.0%. This yields positive gains in agriculture (+0.5% wrt Baseline) and the chemicals sector (+4.3%) due to the 

increased use of fertilizers particularly from the improved industries. 

 

 

Figure 11 - Change in Output wrt Baseline scenario in agricultural sectors in 2050 (left) and Share of Traditional and Improved 

varieties in total land demand in 2050 under climate change impacts (right) 

 

The effects on total GDP are negligible but negative. Real GDP shows a 0.03% reduction compared to baseline in 2050 

induced by the contraction in the maize sector and that in the industry and services. Among GDP components, exports 

show the largest contraction (-0.63% compared to baseline). 

The imports of wheat are significantly reduced (-25.6%) while the exports more than doubled thereby further benefiting 

the balance of trade. The composition of international trade shows a tendency to relocate exports to the rest of Sub 

Saharan Africa (SSA) and towards other small-scale importers (Figure 12). The composition of imports remain quite 

stable if compared to those of the baseline. 



 

 

Figure 12 - (%) Maize and Wheat shares of export and import by trading partner  in 2050 under Climate Change. 

 

 

6.	Conclusions	
 

The climatic shocks determine a recomposition in the use of inputs and primary factors relatively to the baseline. Due to 

the negative productivity shift, the traditional maize sector shows a decline in production and as a consequence also a 

reduction of primary factors demand particularly labour. This determines an increase of the land share relatively to 

other factors in valued added composition. On the contrary, due to the positive impact the improved wheat sector 

increase its demand of primary factors, particularly its labour demand inducing a slight upward pressure on wages 

(+0.5% for all sectors) and a consequent migration of those employed in other sectors (industry and services).  All this 

dynamics lead to a recomposition of land allocation in favour of wheat and maize improved varieties. 
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